Potentially Extreme Population Displacement and Concentration in the Tropics Under Non-Extreme Warming | Scientific Reports
Potentially Extreme Population Displacement and Concentration in the Tropics Under Non-Extreme Warming | Scientific Reports: It is now widely understood that ecosystems and, to some extent, human populations respond to changing climates by moving1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25. For example, butterflies3, marine fish4 and plants5 have been shown to move to cooler locations due to recent warming and human populations have moved rapidly in response to the American Dustbowl21, as well as recent persistent warming events in Mexico10, Indonesia17 and Pakistan16. Prior work has identified many local factors that influence how populations may move in response to changes in their local climate26,27, such as the role of local topography or the movements of nearby competitor populations. We build on this understanding and emphasize a constraint from planetary-scale atmospheric dynamics which may also play an important role in determining how ecosystems and human populations might move in response to climate change. We intentionally develop a simple model to highlight a single climate-biology linkage that emerges as a consequence of the earth’s sphericity and rotation.